Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly
نویسندگان
چکیده
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.
منابع مشابه
Graphene oxide--polyelectrolyte nanomembranes.
Owing to its remarkable electrical, thermal, and mechanical properties, graphene, an atomic layer of carbon, is considered to be an excellent two-dimensional filler for polymer nanocomposites with outstanding mechanical strength along with the potential for excellent electrical and thermal properties. One of the critical limitations with conventional fillers is that the loading fraction require...
متن کاملSecond Harmonic Generation Diagnostic of Layer by Layer Deposition from Disperse Red 1–Functionalized Maleic Anhydride Copolymer
Layer-by-layer (LBL) electrostatic assembly of poly-electrolytes is proving to be an increasingly rich and versatile technique for the formation of multilayered thin films with a wide range of electrical, magnetic, and optical properties. In the present work we synthesized a new nonlinear optical (NLO) maleic acid copolymer containing Disperse Red 1 moieties, built-up multilayer assemblies by a...
متن کاملCharacterization of nanostructured SnO2 thin film coated by Ag nanoparticles
Nanostructured SnO2 thin films were prepared using Electron Beam-Physical Vapor Deposition (EB-PVD) technique. Then Ag nanoparticles synthesized by laser-pulsed ablation were sprayed on the films. In order to form a homogenous coated of SnO2 on the glass surface, it was thermally treated at 500°C for 1 h. At this stage, the combined layer on the substrate was completely dried for 8 h in the air...
متن کاملNanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.
The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild condition...
متن کاملLAYER BY LAYER (LbL) SELF-ASSEMBLY STRATEGY AND ITS APPLICATIONS
This report reviews the technique of layer-by-layer (LbL) self-assembly, in particular cases involving electrostatic interactions between thin film monolayers. LbL selfassembly is used in a variety of different applications, two of which discussed in the report are LbL MEMS and LbL protein multilayers. In the fabrication of LbL MEMS, multilayers of polymer-clay-magnetite nanocrystal are deposit...
متن کامل